
 1

Implementing design patterns in Java
using C# 3.0 concepts

Judith Bishop
Dept Computer Science

University of Pretoria
Pretoria, South Africa

jbishop@cs.up.ac.za

Andrich van Wyk
Dept Computer Science

University of Pretoria
Pretoria, South Africa

avanwyk@cs.up.ac.za

ABSTRACT
In the object-oriented language world, it is often the case that
general purpose languages such as Java and C# are considered as
very similar. From a distance, their good and bad points are
glossed over, and there is very little hard evidence as to whether
particular features, or groups of features really matter in terms of
readability, writeability, maintainability, and most of all,
efficiency. A valid corpus for evaluating these differences is the
set of classic design patterns. We have implemented these afresh
in C# 3.0, and then translated the implementations back into Java.
This paper presents the results of this investigation into the
language features that C# 3.0 has included, that Java 5.0 does not
have, and that are relevant to the implementation of design
patterns. These absent features were covered by the
implementation of generic Delegate and Property classes, as well
as boilerplate classes for the provision of generic yield-based
Iterators and LINQ queries. The evidence suggests that Java has
not up until now been stretched in terms of best practice for
design patterns, and that the lessons learnt from C# can render
improvements in these implementations.

Categories and Subject Descriptors
D.3.2 [Language classifications] Object-oriented languages,
D.3.3 [Programming Languages]: Language Contructs and
Features: Patterns

General Terms: Algorithms, Languages
Keywords: Java 1.5, C# 3.0, delegates, properties, iterators,
LINQ, language translation, language comparison

1. INTRODUCTION
What’s in a language? Benjamin Whorf wrote in the 1950s that
“Language shapes the way we think, and determines what we can
think about.” [11] Expounding on this theme, Alford [1] said that
Whorf had two hypotheses:

“Structural differences between language systems will, in
general, be paralleled by non-linguistic cognitive

differences, of an unspecified sort, in the native speakers of
the language.
The structure of anyone's native language strongly
influences or fully determines the worldview he will acquire
as he learns the language.” [1]

Both of these statements have profound implications for computer
science when applied to programming languages. Both home in
on the notion of a native language, which in computer terms is
one’s first language. Whorf is saying that the first language one
learns has an influence on one’s “worldview”. In computing
terms, this could be interpreted as an inability to see and grasp
concepts not present in the first language. A popular quote from
the great 20th century philosopher, Ludwig Wittgenstein, is in line
with this view: “The limits of my language mean the limits of my
world. All I know is what I have words for.”

The last sentence refers to words, or vocabulary. A programming
language (in a given version) has a fixed syntax and semantics but
it does not have a finite vocabulary: all languages are extensible
by the addition of new libraries that introduce new namespaces
and hence new “words” to the language. However, a programmer
can miss them, or consciously ignore them, staying within the
bounds of an earlier taught vocabulary. Whorf’s emphasis on the
structure of a language is more serious. He is saying that
cognition will be influenced, and certainly will be different,
depending on the structures in one’s first language. Thus, if a
programmer moves on to a second language, he is less likely to be
able to absorb or use concepts that were not present originally.

For both natural languages and programming languages this
statement is a generalization. There will be many individuals who
through a lifetime or a career of thirty years or more, will be fully
fluent and productive to a high level in several languages. In the
case of natural languages, there are people who speak three or
four fluently; in the case of programming languages, a professor
who teaches the subject would be expected to be or have been
thoroughly conversant with up to twenty. However, the vast
majority of the population will conform to Whorf’s hypothesis
and will have a tendency to see the world through the structures
and vocabulary that they learnt first.

It is the purpose of this paper to present an experiment in the
technical possibilities of extending one language (Java 1.5)
according to the structures of another (C# 3.0). The driving force
behind this investigation is to debunk the commonly held belief
that “Java and C# are the same” or if not the same, then of the
same structure (to use Whorf’s term). We hold that this is not the
case and that C# 3.0 has significant features that make it a more
advanced and powerful medium for programming. Nevertheless,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

 2

since Java is so entrenched in industry and academia, we look at
how some of the concepts that are present in C# could be provided
in Java.

1.1 Methodology
In the object-oriented language world, it is often the case that
general purpose languages such as Java and C# are considered as
very similar. From a distance, their good and bad points are
glossed over, and there is very little hard evidence as to whether
particular features, or groups of features really matter in terms of
readability, writeability, maintainability, and most of all,
efficiency. A valid corpus for evaluating these differences is the
set of classic design patterns.

Design patterns encapsulate common ways of using
language features together.

The original 23 design patterns were implemented in C++ and
Smalltalk in 1995 [5] and have over the years been implemented
also in VB, Java and now C#. A well-known C# implementation
that is available online is that from the DoFactory [4]. DoFactory
is a commercial organization that sells frameworks of patterns in
C# and Visual Basic. They are widely consulted. The
implementations come in three versions – structural, real-world
and .NET optimized. Since the programs have not been updated
since 2006, they do not include any features new to C# 3.0.

We implemented all the patterns afresh in C# 3.0 [3] and then
translated the implementations back into Java. In so doing, certain
features stood out as lacking. This paper presents the results of
this investigation into the language features that C# 3.0 has
included, that Java 5.0 does not have, and that are relevant to the
implementation of design patterns. Three of these are properties,
iterators and delegates. We present the related code and assess
how the Java implementations could be improved by using a
extended “vocabulary” in the “key of C#” as it were.

The benefits of such a translation are:

• Java programmers have an extended vocabulary with which to
work.

• Java programmers will have practice with features that might be
added to the language later.

• Improved mobility of developers in both directions.

1.2 Previous work
As languages evolve, there is a need and a tendency to compare
them. The comparisons tend to consist of lists of features that
appear or do not appear in each language. However, since we are
concentrating on C# 3.0 and Java 1.5 (both post 2005 languages)
the literature in this regard is rather thin.

One of the earliest to come out for Java and C# was by Obasanjo
in 2001 [9]. His thorough comparison stands as the standard work
on the subject. It was updated in 2007 for C# 3.0. In the 2007
conclusion to that work, the author states:

“As predicted in the original conclusion to this paper, a
number of features have become common across both C# and
Java since 2001. … However after years of convergence it
seems that C# and Java are about to go in radically different
directions. … the differences between C# and Java will
become more stark over the next few years in contrast to the

feature convergence that has been happening over the past
few years.” [9]

Indeed, it is this divergence that we wish to highlight and in some
ways overcome.

Another recent work is [7] which presents the resulys of an
experiment to convert Java code to C#. The paper’s focus is on
automated language transformers, but it does have interesting
tables in the appendix that map Java features to C# equivalents,
where they are not identical. Microsoft itself provides a similar
translation tool JLCA [6] that we have used with success in other
work.

Translations in the other direction (C# to Java) do not seem to
exist. This is a novel sideline of this study.

2. Languages and patterns
2.1 C#
C# 1.0 was announced by Microsoft with the first .NET release in
2000. It made significant advances over Java, which had been
seriously in use for three years by then. The second column in
Table 1 summarises the novel features of C# 1.0 as compared to
Java. C# 2.0 added five important features in 2005, especially
generics, which had been available in some implementations for
two years. C# 3.0, finalized in 2006, focused on features that
would bring the language closer to the needs of databases and has
a distinct functional feel about it [8].

2.2 Java
The development of the Java language has been far less dramatic.
With the Java virtual machine (JVM) on which Java runs being
circulated worldwide by numerous players (for example in all
browsers), Sun Microsystems was severely constrained as far as
changes to the language and its supporting bytecode were
concerned. Although the Java Platform forged ahead with a
constant array of new APIs and updates to existing ones, the
language did not receive a significant boost until 2004. The third
column in Table 1 shows the six language improvements that
were introduced then. The bottom row of the table highlights what
could be called language-related APIs, those for reflection,
collections and iterators. The energy and excitement surrounding
Java has been in the development of its APIs which have stretched
into every corner of computing.

2.3 Design patterns
It is still open territory as to whether, and how, these new
language features should be used in implementing design patterns.
In books and writings on web sites the pull of custom is very
strong. Because implementations of the patterns were originally
given in C++ and Smalltalk, which have their own particular
object-oriented styles, the translations into other languages have
not always been completely satisfactory. It is a challenge to make
the most of a language, while at the same time retaining the link
with the design pattern and its terminology.
Although design patterns do not force a certain way of coding, a
look at the expository examples in most Java or C# books will
show little deviation from the C++ style of the 1990s. It would
seem that the promise of language features making patterns easier
to implement has been slow to realize. The features are there now,
and it is a question of showing how they can be used, and in
assessing their efficiency. Not all the features listed in Table 1 are
directly relevant for patterns, but a surprising number are.

 3

Java 1.2 1998 C# 1.0 2002 Java 5.0 2004 C# 2.0 2005 C# 3.0 2007

inner classes structs
properties
foreach loop
autoboxing
delegates and events
indexers
operator overloading
enumerated types with IO
in, out and ref parameters
formatted output

generics
autoboxing and unboxing
enhanced for loop
typesafe enumerations
varargs
static import

generics
anonymous methods
iterators
partial types
nullable types
generic delegates

implicit typing
anonymous types
object and array initializers
extension methods,
lambda expressions
query expressions (LINQ)

API
Reflection
Collections framework

API
Reflection

API
Iterable

standard generic delegates

Table 1. Timeline of the development of Java and C# language features

2.4 Design patterns and language features
The implementations in Bishop [3] had the specific aim of
exploring new language features. They come in two versions,
known as the Theory code and Example code. The Theory code is
similar in length and intent to the Structural versions from
DoFactory, and presents a minimalist version of each pattern, in
which the essential elements can be seen in stark relief. The
Examples add flesh to the pattern, and in many cases use more or
slightly different features as a result.

In [2] we itemized those pattern implementations in DoFactory’s
NETOptimized and/or Bishop’s Example sets that use advanced
C# features. All of the pattern implementations made use of
normal OOPS features such as inheritance, overriding,
composition, access modifiers and namespaces, object and array
initializers. From the list presented there, we can extract the
following non-Java features:

1. Auto-properties are used in most patterns that have data
classes.

2. Yield-based Iterators appear in the Iterator pattern.

3. Delegates appear in five patterns – Adapter, Command,
Mediator, Chain and Observer.

4. Query expressions are used in the Iterator pattern.

We were able to implement all of these in Java by means of
wrapper classes, but we had to make use of the most uptodate
Java features, as added to Java 1.5 (see Table 1). These are

1. Generics – including the rarely used class <?> construct for
unspecified classes, to be used along with reflection

2. Enhanced for loop – mirroring C#’s foreach and a cleaner
Iterable interface.

3. Typesafe enumerations

4. Varargs for generalizing methods over variable number of
parameters with the new syntax …

Based on web searching for these constructs, it would seem that
they have not been widely incorporated into the Java
programmer’s repetoire yet. This paper therefore has the
additional purpose of exposing their usefulness both in design
patterns and in general.

3. The experimental program
We translated all the programs in [3] to Java, and they worked.
We then started on three of the theory programs illustrating the
features above: Mediator, Iterator and Prototype. For Mediator,
we defined a Delegate class that enabled us to mimic the original
C# design and implementation. For Iterator, we implemented a
customized Iterator class with the new Java Iterable interface. For
the Prototype, we wrote a simple Property class.

We then embarked on a more challenging example, that of
querying a tree via LINQ based structures. LINQ is a set of
extensions to the .NET Framework that encompasses language-
integrated query, set, and transform operations. It extends C# and
Visual Basic with native language syntax for queries and provides
class libraries to take advantage of these capabilities. The
objective was to maintain as much of the “syntactic sugar”
provided by C# for LINQ. The premise is that this syntactic sugar
is “good sugar”, making programs leaner and cleaner, and
therefore more maintainable and more easy to develop.

To support LINQ-like syntax in Java, we went through numerous
iterations of our new Delegate, Iterator and Property classes,
making them more powerful and more suited to general use. The
driver program for the experiment is shown in the Appendix,
alongside the full program in C#. In the remainder of this section,
we discuss the three classes that support LINQ in Java, referring
to their use in the Java drive in the Appendix. Each is introduced
with one its own design pattern first.

 4

3.1 The Delegate class and LINQ
The delegate facility in C# allows the creation of types and
objects of them that will have methods as values. At a low level of
detail they are similar to C++ function pointers, but Java does not
have them at all. Not only are delegates used in several of our C#
3.0 design pattern implementations, they are also the underlying
basis for the LINQ mechanism. Referring to the C# program in
the Appendix, we can see the following LINQ query for a subset
of the family data set up in the object initializer earlier:

var selection = from p in family

 where p.Birth > 1980

 orderby p.Name

 select p;

 }
Leaving aside the sorting, this excerpt can be translated as a C#
3.0 lambda expression:

var selection2 = family.

 Where (p => p.Birth > 1980);

Which in itself is syntactic sugar for an anonymous delegate as in:
var selection3 = family.

 Where (delegate (Person p) {
 return p.Birth > 1980;});

In this usage, Where is a heavily disguised method declared on
any collection class. Its definition is

//C# 3.0
public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, boolean> predicate) {
 foreach (var item in source) {
 if (predicate(item)) {
 yield return item;
 }
 }
}

Why does Where, as defined, take two parameters when Where,
as called above, takes only one? The reason is that Where is an
extension method to any generic enumerable type (virtually
anything). As such, it specifies its type in its first parameter, but
does not require it when called. Extension methods are defined
separately to the class in C# 3.0. The second parameter is a built-
in generic delegate that returns the type of the last parameter (in
this case boolean) and accepts as many parameters as are listed
before that, in this case only one of type T.
Given this explanation of the C# 3.0 query syntax, we created a
Delegate class in Java 1.5, making heavy use of reflection (Figure
1). The Delegate constructor takes the object in which the delgate
is based, as its first parameter, then the method name, then the
type of any number of parameters for the method. These are
specified using Java’s new varargs feature. The method is looked
up and stored in the field name, m.

// Java 1.5
import java.lang.reflect.*;

class DelegateCreationException
 extends RuntimeException {};

class DelegateInvocationException
 extends RuntimeException {};

public class Delegate<T> {

 Method m;

 Object self;

 public Delegate(Object obj, String name,
 Class<?>... argTypes) {

 self = obj;

 try {

 m = obj.getClass().
 getDeclaredMethod(name, argTypes);

 } catch (NoSuchMethodException e) {

 throw new DelegateCreationException();

 }

}

public T invoke(Object... args) {

 try {

 T result = (T)m.invoke(self, args);

 return result;

 } catch (IllegalAccessException e) {

 throw new DelegateInvocationException();

 } catch (InvocationTargetException e) {

 throw new DelegateInvocationException();

 }

 }

}

Figure 1 Generic Delegate class in Java
The declaration of an anonymous delegate object in Java using
this class is reassuringly close to the original C# 3.0 (taken from
the Appendix):

// Java
Iterable<Person> selection = family.where(

 new Delegate<Boolean>
 (this,"after1980",Person.class));

The where method in Java would be declared alongside the
iterator for this selection, as described in the next section.

Another use of delegates is in the Mediator pattern, which is
shown in Figure 2.

Figure 2 Mediator pattern

The Mediator pattern enables objects to communicate according
to a certain protocol without knowing each other’s identities.
These are given to the Mediator, which handles the traffic. In our
C# 3.0 version, the Callback is a delegate. Callbacks use the
feature of delegates that enables a chain of methods to be stored,
so that when the delagte object is called, all of the subscribed
methods are activated. This is possible also using the Java
Delegate class, simply by declaring respond (the Callback object’s
name) as a list of such delegates.

3.2 Iterators
The Iterator design pattern is one that lends itself most to
language assistance. Many languages in the past three decades
have investigated and perfected iterator mechanisms. The diagram

 5

in Figure 3 shows our design of a C# 3.0 Iterator pattern. It relies
on the foreach loop, on a collection that has an enumerator
implemented for it (as with a list or array) or on a customized one
(as for a tree). Finally, the yield-return mechanism interacts with
the foreach to supply items in a lazy fashion. In the program in the
Appendix, the C# 3.0 LINQ query is not executed until the
foreach starts. Then each time the loop interfaces with the
corresponding iterator, it will yield a value of the correct type
back.

Figure 3 Iterator pattern

Unfortunately, the iterator mechanism in Java is not the same. In
Java, the foreach loop connects to an appropriate Iterator that has
a Next method. This is called by the loop in a simply way for each
iteration of the foreach.

Most examples of iterators in Java 1.5 and C# 3.0 only go as far as
lists, for which built in Next methods and yields exist. The
program in the Appendix deliberately employs a generic Tree
class, using a generic Node class. The C# loop to process the
whole tree includes a call to Preorder (it could just as well have
been any other order appropriate for a tree). In the Tree class we
find the code in Figure 4.

//C# 3.0
public IEnumerable <T> Preorder {

 get {return ScanPreorder (root);}
}

// Enumerator with T as Person

 private IEnumerable <T>
 ScanPreorder (Node <T> root) {

 yield return root.Data;

 if (root.Left !=null)

 foreach (T p in ScanPreorder (root.Left))

 yield return p;

 if (root.Right !=null)

 foreach (T p in ScanPreorder (root.Right))

 yield return p;

 }

 }

 Figure 4 C# 3.0 Yield-return mechanism with foreach
The yield statement implements a coroutine mechanism, allowing
the foreach in the calling routine to continue after each item has
been supplied.

Since Java does not have such a mechanism, all iterators for
foreach loops must implement the next, hasNext and remove
methods, and the calling is in one way only. For complex
structures such as trees, the next method also has to employ
backup support to implement recursion so that a return can be
made after each item. Nevertheless, we can mimic the behaviour
of the yield-return by using sensible identifier names, for example
having a yield method.

// Java
public class PreorderIterator
 implements Iterator <T> {

 protected Stack<Node<T>> traversalStack;

 PreorderIterator (Node <T> root) {

 traversalStack = new Stack<Node<T>>();

 traversalStack.push(root);

 }

 //Standard Java Iterator methods

 public boolean hasNext() {

 return !traversalStack.empty();

 }

 public T next () {

 return yield().data.get();

 }

 public void remove() {

 throw new UnsupportedOperationException(
 "Method not implemented");

 }

 protected Node<T> yield() {

 Node<T> node = traversalStack.pop();

 if (node.right.get() != null)

 traversalStack.push(node.right.get());

 if (node.left.get() != null)

 traversalStack.push(node.left.get());

 return node;

}
}

 Figure 5 Generic yield-based Iterator in Java
Comparing Figure 4 and Figure 5, we see that the Java is not very
much more complex than the C#. C# can safely use recursion,
because the coroutine mechanism will pass control back to the
foreach, and when the next item is needed, the recursive stack is
still correct. Java has to emulate this process.

3.3 The Property Class
We end up by taking a simple pattern that has a direct translation
from C# 3.0 to Java – but has a surprising twist in the tail. The
Prototype pattern, illustrated in Figure 6, creates new objects by
cloning one of a few stored prototypes. The list of prototypes is
maintained in a dictionary data structure. The point that the
pattern illustrates is that there is a need for a deep copy process
when the prototype is a data structure, rather than a single level
object. Thus the familiar clone method needs to be extended by
serializing to disk and back again to achieve the deep copy.
Fortunately, both languages provide serialization and the sequence
of steps to activate it is well known.
To test the Prototype pattern, one needs to set up a class with
several fields, such as in Figure 7.

 6

Figure 6 Prototype Pattern

DeeperData is a secondary class that will mean that Prototype
objects will need serialization when they are copied. Country is a
field that gets a value in the constructor and can be seen by
objects of the class, but cannot be overwritten. This is indicated
by the omission of the special word set in the property.

//C# 3.0
class Prototype : IPrototype <Prototype> {

 public string Country {get;}
 public string Capital {get; set;}
 public DeeperData Language {get; set;}

 public Prototype (string country,
 string capital, string language) {
 Country = country;
 Capital = capital;
 Language = new DeeperData(language);
 }

 public override string ToString() {
 return Country+"\t\t"+Capital+
 "\t\t->"+Language;
 }
 }

Figure 7 Prototype class in C# 3.0
As would be normal in C#3.0 programming, the Prototype class
uses automatic properties1. Country is one such. It hides a private
field of the given type and provides get and set access to it. Either
of the properties can be omitted. These automatic properties are a
considerable improvement over the C# 1.0 version that required
the declaration of the private variable as well, as in:

// C# 1.0
private string country;
public string Country {
 get {return country;}
 put {country = value;};

Compare this to the Java equivalent:
// Java 1.5
private String country;
public String getCountry() {
 return country;
}
public void setCountry(String c) {
 country = c;
}

1 The term properties is more often used to refer to the fields of a GUI

component in Java. Technically these are the same as the fields we
describe, but having already been declared in a Java API, GUI
properties would not be susceptible to this approach.

Apart from the lines-of-code metric that one line in C# 3.0
becomes six in Java 1.5 (for every field) there are inherent
insecurities in the Java version. The connection between the
accessor methods and the variable is a convention only. It is a
common error to cut and paste this code for additional fields and
then not to update them completely. The difference in usage is
also significant:

//C#
c.Prototype = “China”;

//Java 1.5
c.setCountry(“China”);

The intention of the C# syntax is to render private fields
accessible in a variable-like syntax, but still to retain full control
over what can be altered. We therefore implemented a generic
Property class that would give Java programmers a simpler way to
define fields. The class is given in Figure 8. The class
encapsulates a private field of type T and, right at the bottom,
provides get and set methods to it.

// Java
import java.io.Serializable;
public class Property <T>
 implements Serializable {
//Property class J Bishop and A van Wyk, May 2008
// Mimics C3.0's automatic properties

 public static enum Kind
 {GETANDSET, GETONLY, SETONLY};

 private T x;

 private Kind propertyKind = Kind.GETANDSET;

 public Property () {

 x = null;

 }

 public Property (Property<T> copy) {

 x = copy.get();

 }

 public Property (T value) {

 x = value;

 }

 public Property (T value, Kind p) {

 x = value;

 propertyKind = p;

 }

 public T get() {

 if (propertyKind != Kind.SETONLY)

 return x;

 else {

 System.out.println(
 "Invalid get property access");

 System.exit(0); return null;

 }

 }

 public void set (T value) {

 if (propertyKind != Kind.GETONLY)

 x = value;

 else {

 System.out.println(
 "Invalid set property access");

 System.exit(0);

 }

 }

}

Figure 8 Generic Property class in Java

 7

In order to provide for different combinations of get and set
accessors, there is enum field on the value constructor. Within the
get and set methods, this field is queried each time. This is not
efficient, and we are investigating better ways, such as conditional
compilation.

In the program in the Appendix, there are two declarations of
Properties in the Person class. As objects, these are instantiated in
the constructor and are used in the toString method. However, all
is not so simple.
Going back to the Prototype pattern, its implementation in Java
follows that of C# of the Prototype class except that it has to
implement the clone method for its simple data, now represented
as Property objects. Thus we have:

// Java 1.5
public Prototype clone() {

 Prototype copy = new Prototype();

 copy.country = new
 Property<String>(this.country);

 copy.capital = new
 Property<String>(this.capital);

 copy.language = new
 Property<DeeperData>(this.language);

 return copy;
}

In the C# 3.0 versions of the abstract class IPrototype, use is made
of the built-in generic MemberwiseClone method which sorts all
this out. Note that in all implementations, deep copy – for a data
structure – must still be done using serialization.

4. Evaluation
The preceding discussion has described in detail an experiment in
using C# 3.0 implementations of design patterns as models for
Java implementations. In so doing, we have
• implemented three generic classes – Delegate, Property,

• provided a boilerplate for complex Yield-based iterators in
Java, and

• emulated the LINQ queries.

Each of the classes has been tested in more than one Pattern
program, and as described in Section 3.3, the classes had to be
upgraded under emerging requirements. The classes themselves
are small, and they render the implementation of programs in Java
1.5 remarkably similar to those in C# 3.0.

It is important to realize that it is the latest versions of the
languages that we are employing: neither of the sets of patterns
will compile on older versions.

4.1 Other work
As mentioned in Section 1.2 there has not been much work
reported on stretching Java 1.5. An older and more complex
attempt at a Delegate class exists at [13]. We could not find a
prior attempt to mimic Properties. Iterators in Java are well
explored, but we did not find an example of yield-based iteration.

5. Conclusions
At the start of this paper, we introduced the notion of language
shaping the way we thing. If one starts out in programming with
what is evidently a higher-level language, then moving to a lower
one presents challenges. This experiment shows that those

challenges can be overcome by mimicking the features that are
lacking using classes. This requires careful programming, and, in
the case of Java, we had to stretch it to its limits. From the point
of view of obtaining a user program that looked in Java the same
as in C#, the experiment could be deemed a success.

Future work involves testing more of our Java patterns, and
looking for more avenues to improve Java’s power.

REFERENCES

[1] Alford, Danny K H, Demise of the Whorf hypothesis,
Phoenix: New Directions in the Study of Man, Vol. IV, Nos.
1 and 2, 1980, found at http://www.enformy.com/dma-
dwh.htm, accessed on 5 May 2008

[2] Bishop, J, and Horspool, R. N., On the Efficiency of Design
Patterns Implemented in C# 3.0, TOOLS Europe 2008, to
appear.

[3] Bishop, J., C# 3.0 Design Patterns. O’Reilly Media,
Sebastapol, CA, 2008

[4] Data and Object Factory, Design Pattern Framework: C#
Edition. http://www.dofactory.com/Default.
aspx 2006, accessed on 5 May 2008

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented
Software. Boston, MA, Addison-Wesley (1995).

[6] Java Language Conversion Assistant [Online]. Available:
http://msdn.microsoft.com/en-za/aa718346(en-us).aspx/
accessed on 5 May 2008

[7] M. El-Ramly, R. Eltayeb, H.A. Alla, An Experiment in
Automatic Conversion of Legacy Java Programs to C#, IEEE
International Conference on Computer Systems and
Applications, pp. 1037-1045, 2006

[8] Microsoft Corporation: C# 3.0 Reference Documentation,
http://msdn2.microsoft.com/vcsharp

[9] Obasanjo, D., A comparison of Microsoft’s C# programming
language to Sun Microsystem’s Java Programming
Language, http://www.25hoursaday.com/CsharpVsJava.html,
2007, accessed on 5 May 2008

[10] Steven D. Fraser, James Gosling , Anders Hejlsberg, Ole
Lehrmann Madsen, Bertrand Meyer, Guy Steele, Celebrating
40 years of language evolution: simula 67 to the present and
beyond, Companion to the 22nd ACM SIGPLAN conference
on Object oriented programming systems and applications,
0Pages: 1021 – 1023, 2007

[11] Whorf, Benjamin (John Carroll, Editor) (1956). Language,
Thought, and Reality: Selected Writings of Benjamin Lee
Whorf. MIT Press.

[12] Wikipedia: Java version history,
http://en.wikipedia.org/wiki/Java_version_history, accessed
on 5 May 2008

[13] Winston, A. Strongly-typed Java delegates, 2005, at
http://weblogs.java.net/blog/alexwinston/archive/2005/04/str
ongly_types_1.html, accessed on 5 May 2008

 8

APPENDIX – Sample program in Java 1.5
and C# 3.0

//Iterator Pattern Example, J Bishop, Sept 2007
//Illustrates the use of iterators and
//LINQ based queries on a tree structure
//Uses the classes Console, Delegate,
//Property, Node and Tree
//Java 1.5 with A van Wyk May 2008

class Person {

 public Property <String> name;

 public Property <Integer> birth;

 public Person (String name, Integer birth) {

 this.name = new Property<String>
 (name,Property.Kind.GETONLY);

 this.birth = new Property<Integer>(birth);

 }

public String toString () {

 return ("["+name.get()+", "+birth.get()+"]");

}
}

public class IteratorFamilyTree {

 public boolean after1980 (Person p) {

 return (p.birth.get() > 1980);

 }

 public static void main(String [] args) {

 Tree <Person> family =
 new Tree <Person> (new Node <Person>

 (new Person ("Tom", 1950),

 new Node <Person>
 (new Person ("Peter",1976),

 new Node <Person>

 (new Person ("Sarah", 2000), null,

 new Node <Person>

 (new Person ("James", 2002), null,

 null)),//no more siblings James

 new Node <Person>

 (new Person ("Robert", 1978), null,

 new Node <Person>

 (new Person ("Mark", 1980),

 new Node <Person>

 (new Person("Carrie",2005),
 null,null),

 null)// no more siblings Mark

)),

 null) // no siblings Tom

);

 Console.WriteLine("Full family");
 for (Person p : family)

 Console.Write(p+" ");

 Console.WriteLine("\n");

 Iterable<Person> selection = family.where(

 new Delegate<Boolean>
 (this,"after1980",Person.class));

 Console.WriteLine("Full family");
 for (Person p : family)

 Console.Write(p+" ");

 Console.WriteLine("\n");

 }

}

//Iterator Pattern Example J Bishop Sept 2007
//Illustrates the use of LINQ with iterators
//on a tree structure
//C# 3.0

using System;
using System.Collections.Generic;
using System.Linq;

class Person {

 public Person() {}

 public string Name {get; set;}

 public int Birth {get; set;}

 public Person (string name, int birth) {

 Name = name;

 Birth = birth;

 }

 public override string ToString () {

 return ("["+Name+", "+Birth+"]");

 }
}

class IteratorPattern {

 static void Main() {

 var family =
 new Tree <Person> (new Node <Person>

 (new Person ("Tom", 1950),

 new Node <Person>
 (new Person ("Peter",1976),

 new Node <Person>

 (new Person ("Sarah", 2000), null,

 new Node <Person>

 (new Person ("James", 2002), null,

 null)),//no more siblings James

 new Node <Person>

 (new Person ("Robert", 1978), null,

 new Node <Person>

 (new Person ("Mark", 1980),

 new Node <Person>

 (new Person("Carrie",2005),
 null,null),

 null)// no more siblings Mark

)),

 null) // no siblings Tom

);

 Console.WriteLine("Full family");

 foreach (Person p in family.Preorder)

 Console.Write(p+" ");

 Console.WriteLine("\n");

 var selection = from p in family

 where p.Birth > 1980

 orderby p.Name

 select p;

 }

 Console.WriteLine(
 "Born after 1980 in alpha order");

 foreach (Person p in selection)

 Console.Write(p+" ");

 Console.WriteLine("\n");

 }
}

