

Language Features Meet Design Patterns:
Raising the Abstraction Bar

Judith Bishop
Computer Science Department

University of Pretoria
Pretoria 0002

jbishop@cs.up.ac.za

ABSTRACT
In the context of software engineering, abstraction is the means by
which we move from layer to layer in the realization of the
solution to a large problem. It has been recognized for over a
decade that design patterns are one of the key mechanisms for
implementing reliable and maintainable software. This paper
explores where they fit in in the software “food chain”. In
particular, it examines how advances in language design can
narrow the gap for implementing design patterns. Examples are
given of syntax features in C# 3.0 (extension methods and LINQ)
as well as of library methods (Serialize) in terms of which pattern
implementations become easier to produce and reproduce. The
challenges that face design pattern implementation are discussed
and the promise of reusable design patterns examined.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Classes and objects, Inheritance, Patterns

General Terms
Algorithms, Design, Reliability, Human Factors, Languages.

Keywords
Design patterns, language features, C# 3.0, LINQ

1. INTRODUCTION
Abstraction is defined as a domain-independent unit of a design
vocabulary that subsumes more detailed information [15]. For
thirty years, this principle of abstraction has fed into the
improvement of computer software. Major milestones are
structured programming, data abstraction (later becoming object-
orientation), and generic (or template) programming. Each of
these movements led to software that was more reliable and more
reusable. Beneficial side effects were that programming also
became easier to describe as a discipline, and to teach. For the
more complex discipline of software engineering, however, the
incorporation of abstract thinking has not been as obvious or as
codified.

Kramer [13] regards abstraction as the key to computing and
believes that it is necessary to measure the abstraction abilities of
those entering the profession. He further emphasizes that
abstraction occurs at different levels and that it is important to be
able to move between levels [12]. This paper explores this point
by looking at the relationship between design patterns and
programming languages. A decade ago, there was considerable
discussion about raising the bar so as to provide direct support for
design patterns in language features [2] [5] [6] [7] [10]. However,
the languages of the time (chiefly C++) did not provide sufficient
abstract features to enable this movement to gain momentum.
With the advent of C# 3.0, the situation has changed and there is
now definite evidence of how the power of the language can be
used to implement design patterns in new and higher-level ways
[4].
The issue then becomes: how do these implementations become
part of the design vocabulary talked about by Rugaber [2006]? If
one scans books on design patterns published over the past
decade, one finds that the implementation of the patterns has not
changed very much. Whereas languages have introduced higher-
level features such as generics, delegates and iterators, pattern
implementations still rely mostly on inheritance and aggregation
for linking the classes that play the roles in a pattern. In other
words, abstraction is not being actively used in the field of design
patterns. Part of the reason for this position is that design patterns
are themselves a “vocabulary that subsumes detailed
information”. The common vocabulary of patterns is one of its
most valuable assets. Yet, it is in the nature of patterns as design
elements that they have to be implemented over and over again.
Meyer has done extensive research into what would make a
pattern componentizable, so that they can be reused [1] [14].
More recently, aspects have been seen as a way of maintaining the
higher layer of abstraction of patterns [11]. However, the vast
majority of developers and software engineers sees patterns from
the level of UML diagrams. They then realize them in whatever
implementation language is dictated by custom or availability.
This paper seeks to show how by making use of the more abstract
features of a programming language, the gap between design
patterns and their implementation can be narrowed. The result is
faster and more secure implementation, precisely those welcome
attributes that the abstraction milestones mentioned earlier
achieved. Although I shall present examples in C# 3.0, the thrust
of the argument is how to educate and encourage developers to
move away from established practice in any language, present or
future. Thus I shall present an overview of my experience with
patterns, and then concentrate on three – Bridge, Prototype and
Iterator. In each of these three cases (but not only these), the C#
3.0 implementation is considerably shorter than the equivalent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ROA’08, May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-028-7/08/05...$5.00.

standard C# or Java version. I shall conclude that the use of the
available language abstractions therefore contributes to
readability, writability, extensibility and traceability. Full versions
of all the patterns can be found in at http://patterns.cs.up.ac.za.

2. THE SOFTWARE FOOD CHAIN
2.1 Background
Pioneers in the field of ecology in the early half of the last century
recognized that the animal kingdom existed in layers in terms of
the food they eat, the now familiar food chain [8]1. Fascinating
results from that study are:
1. With each shift from one link to the other, up the chain, body

sizes are larger, and population sizes are smaller.
2. Each stage in the chain transforms smaller particles into larger

units, thereby making the food conveniently available to still
larger animals, who couldn’t cope with the smaller particles.

3. There are very definite limits, both upper and lower, to the size
of food that any animal can eat.

These properties are the same as those that we recognize, or hope
to achieve, in abstraction in software. As software is implemented
in layers of abstraction, the upper layers contain larger “bodies” or
components, and fewer of them. The process of implementation
creates new items that certainly do form a more convenient set of
“particles” or components for the next layer to use. Finally,
abstractions need to be carefully chosen in order to be useful. At
any one layer in software development, if the lower layer is too
low, the task of the developer becomes unnaturally difficult.
Similarly, if the elements provided are too highly abstract, they
could well be ignored in favour of those in the middle ground.
We now apply these principles to the relationship between design
patterns and programming languages.

2.2 Design patterns as abstractions
Design patterns were introduced in 1994 in a book that specifies
and describes 23 patterns [9]. These form the foundation of any
study of the subject and are still regarded as the essential core
patterns today.

Design patterns encapsulate common ways of using
language features together.

The core patterns address issues in mainline object-oriented
programming (OOP), and the original implementations were
presented in C++ and Smalltalk (the primary OOP languages at
the time they were developed). Since then, other books have
implemented the patterns in Java, Visual Basic, and C#. As the
value of the pattern concept has become accepted, new patterns
have been proposed to add to the original list. In addition, there
are now patterns that are applicable to specific areas, such as
software architecture, user interfaces, concurrency, and security.
Although these patterns are extremely important in their areas,
their adherents are fragmented, and the core set of universally
accepted patterns has not been expanded.
Design patterns provide a high-level language of discourse for
programmers to describe their systems and to discuss common

1 As quoted in David Quammen’s recent book “Monster of God:

the man-eating predator in the jungles of history and the mind”,
Hutchinson, 2004, from where I got the inspiration for this
analogy.

problems and solutions. This language comprises the names of
recognizable patterns and their elements. The proper and
intelligent use of patterns will guide a developer into designing a
system so that it conforms to well-established prior practices,
without stifling innovation.
The patterns have illustrative names and are described with
diagrams illustrating their role players. There are only 23 classic
patterns (fewer than the letters of the English alphabet), and a
good programmer can learn the names and uses of all of them
with some practice. When faced with design choices, such
programmers are no longer left to select language features such as
inheritance, interfaces, or delegates but can instead home in on the
bigger picture. They would be able to recognize that an Observer
pattern would be suitable for a blog system, and a Proxy pattern
would be useful in a community network system. The element of
decision-making is not removed, but it is raised to a higher level.
This level of abstraction is a result of combining language features
in a tried and tested way. The familiarity of the classic design
patterns has contributed much to their success. Design patterns
exist also in other areas, such as enterprise systems, security, real-
time systems and parallel programming, but their adherents and
therefore their impact are confined to a niche community.
Design patterns can be said to be one of the most successful and
recognizable abstraction tools that software engineers have at their
disposal. However, as mentioned earlier, an abstraction exists in a
chain. Design patterns “feed on” programming languages that
form a wobbly and constantly moving layer.

2.3 The programming languages layer
Those who have long-term programming experience will
appreciate that time brings improvements to a language. Simple
things that we take for granted today—like type checking of
variables—were nonexistent or optional in the languages of the
1970s. Object orientation, which is the basis for programming
these days, only came into vogue in the 1990s, and generics, on
which modern collection classes for stacks, maps, and lists are
based, were just a research project five years ago.
Java and more notably C# have added significant language
features over the last decade. For example, C# 2.0, which was
developed between 2002 and 2005, added generics, anonymous
methods, iterators, partial and nullable types. C# 3.0, finalized in
2006, focuses on features that would bring the language closer to
the data that pours out of databases, enabling its structure to be
described and checked more accurately. These features included:
implicit typing of local variables and arrays, anonymous types,
object and array initializers, extension methods, lambda
expressions and query expressions (LINQ).
Successful programmers keep abreast of improvements in
languages, but often it is not obvious even to a seasoned
professional how a particular new feature will be useful. Some
features, such as automatic properties and collection initializers
are likely to immediately find a home; others, such as extension
methods, are somewhat more abstract. Examples can be used to
illustrate the utility of many emerging language features—but
while examples illustrate, they can also obscure, because they are
directed towards solving particular problems. Given an example
of how iterators work with a family tree manager, would it be
clear how to reuse them for a chat room program? The connection
is not at all obvious and could easily be missed.

2.4 Pattern implementations
It is still open territory as to whether, and how, new language
features should be used in implementing design patterns. In books
and writings on web sites the pull of custom is very strong.
Because implementations of the patterns were originally given in
C++ and Smalltalk, which have their own particular object-
oriented styles, the translations into other languages have not
always been completely successful. There has been continuing
debate over the language features that could make design patterns
significantly easier to express [2] [6]. At the same time, the rise of
design patterns has coincided with considerable advances in OOPs
features in mainline languages such as Java and C#. Concepts
such as generics, delegates and iterators, which some of the design
patterns were conceived to provide, are now part of the language
itself. A debate in 2000 examined the experimental languages of
the day (Cecil, Dylan and Self) and looked ahead to first-class
generic functions, multiple dispatching and a flexible polymorphic
type system [7]. All of these are once again in mainstream
languages now.
It is therefore a challenge to make the most of a language, while at
the same time retaining the link with the design pattern and its
terminology. It is certainly not an aim of design patterns to force a
certain way of coding, thus depreciating the value of new
language features. Nevertheless, a look at the expository examples
in most Java or C# books will show little deviation from the C++
style of the 1990s. It is this “pattern” of complicity that this paper
seeks to break.
In [4] I have set out a complete set of implementations of patterns
that makes use of novel features of C# all the way up to version
3.0, running on the .NET 3.5 Beta Framework (August 2007).
This list of features is shown in Table 1. The list has been sorted
according to the features actually required (central column), from
simplest (interfaces) to most complex (query expressions).
The features in the central column are those that are absolutely
necessary to implement the pattern. However, in order to make a
meaningful example, more might be required, and these features
are shown in column 3. For example, both the Mediator and
Observer patterns can be implemented as console applications, but
if they are truly to show their mettle, they will need to run with
Windows Forms, in which case threads will be needed to react to
events caused by user input.

3. EXAMPLES
3.1 The Bridge pattern
The Bridge pattern decouples an abstraction from its
implementation, enabling them to vary independently. As such, it
is an interesting pattern to consider in the context of abstraction in
the large.
Inheritance is a common way to specify different implementations
of an abstraction. However, the implementations are then bound
tightly to the abstraction, and it is difficult to modify them
independently.
Table 1: Language features used in patterns

Pattern Language features Optional and in the
examples

Abstract
Factory

interfaces generics, generic
constraints

Pattern Language features Optional and in the
examples

Bridge interfaces extension methods
Builder interfaces generic, generic

constraints
Decorator interfaces
Factory Method interfaces
Adapter interfaces,

inheritance,
delegates, anonymous
functions, threads,
events

Proxy interfaces, private collections
State interfaces, selection
Strategy interfaces, selection generics, nullable

types
Interpreter recursion, selection
Visitor interfaces, recursion reflection
Façade namespaces
Singleton private, nested

classes, static
property

Template
Method

method overriding

Command delegates
Mediator delegates threads
Observer interfaces,

delegates, events
threads

Flyweight interfaces, structs,
collections, indexers

implicit typing,
initializers,
anonymous types

Memento serialization,
collections, indexers

Prototype cloning,
serialization,
collections, indexers

Chain of
Responsibility

generics, exceptions enumerated types,
initializers

Composite interfaces,
collections,
generics, properties,

Iterator enumerators,
foreach, query
expressions (Linq)

generics, recursion

Figure 1. Bridge pattern UML diagram

The Bridge pattern provides an alternative to inheritance when
there is more than one version of an abstraction. In the UML
diagram (Figure 1) the two implementations, A and B, implement
an interface called the Bridge. The Abstraction includes an
attribute of type Bridge but is not otherwise in a relationship with
the implementations.
Bridge is a very simple, but very powerful pattern. Given a single
implementation, we can add a second one together with a Bridge
and an Abstraction and achieve considerable generality over the
original design. The code related to the diagram is shown in
Figure 2.

using System;

class Abstraction {
 Bridge bridge;
 protected internal Bridge Bridge {
 get {return bridge;}}

 public Abstraction (Bridge implementation) {

 bridge = implementation;

 }

 public string Operation () {

 return "Abstraction" +" <<< BRIDGE >>>
 "+bridge.OperationImp();

 }

 }

 interface Bridge {

 string OperationImp();

 }

 class ImplementationA : Bridge {

 public string OperationImp () {

 return "ImplementationA";

 }

 }

 class ImplementationB : Bridge {

 public string OperationImp () {

 return "ImplementationB";

 }

 }

class Client {
 static void Main () {

 Console.WriteLine(new Abstraction
 (new ImplementationA()).Operation());

 Console.WriteLine(new Abstraction
 (new ImplementationB()).Operation());

 }
}
/* Output
Abstraction <<< BRIDGE >>>> ImplementationA
Abstraction <<< BRIDGE >>>> ImplementationB
*/

Figure 2. Bridge pattern implementation

In this exemplar of the Bridge pattern, the Abstraction is
implemented in two different ways based on the Bridge
interface. In addition, the Abstraction class on the one hand
and the Bridge interface on the other can be extended
independently. The mechanism remains, but new functionality can
be added on both sides. This requires a degree of agreement that
the pattern promised to avoid.
If the developer of the Abstraction adds further operations,
these can optionally be implemented in the classes across the
Bridge, since the Abstraction is a class not an interface. If
however, the implementators want to add common operations to
the Abstraction, they would need access to it, which they
might not have. Enter a new feature of C# 3.0: extension methods.
Extension methods allow developers to add new methods to an
existing type without having to create an inherited class or to
recompile the original. They therefore play a role at the software
design level. An extension method is defined the same way as any
other, with two stipulations:

• It is declared as static in an outer-level static, nongeneric
class.

• The type it is extending is declared as the first parameter,
preceded by this.

The method can then be called as an instance method on an object
of the type that has been extended. To provide Operation2
without altering or subclassing Abstraction, we add:
static class AbstractExtensions {

 public static string Operation2 (
 this Abstraction me) {

 return "Extension <<<BRIDGE>>> "+
 me.Bridge.OperationImp2();

 }

 }

This example shows how abstraction (small “a”) can be achieved
via patterns, and also how a new language feature can make it
easier to achieve over the lifetime of a project.

3.2 Prototype pattern
A different way of raising the abstraction bar is to use library
methods. This option is seen in the Prototype pattern (Figure 3).
The Prototype pattern creates new objects by cloning one of a few
stored prototypes. Objects are usually instantiated from classes
that are part of the program. The Prototype pattern presents an
alternative route by creating objects from existing prototypes.

Figure 3. Prototype Pattern UML Diagram

Given a key, the program creates an object of the required type,
not by instantiation, but by copying a clean instance of the class.
This process of copying, or cloning, can be repeated over and over
again. The majority of Prototype implementations stick to
“shallow cloning” which works for the copying of a single object.
But collections of objects are just as common and cloning a
collection requires traversing it, writing it somewhere, and reading
it back again. What languages such as Java and C# have done is to
implement serialization which can take an arbitrary structure and
linearize – or serialize – it. It can also bring it back again. The
algorithm for such a traversal of an arbitrary structure is non-
trivial, so that serialization is a considerable jump in the
abstraction level for patterns. The generic class for serializing a
collection in C# is shown in Figure 4.

[Serializable()]

 public abstract class IPrototype <T> {

 public T Clone() {

 return (T) this.MemberwiseClone();

 }

 public T DeepCopy() {

 MemoryStream stream = new MemoryStream();

 BinaryFormatter formatter =
 new BinaryFormatter();

 formatter.Serialize(stream, this);

 stream.Seek(0, SeekOrigin.Begin);

 T copy = (T) formatter.Deserialize(stream);

 stream.Close();

 return copy;

 }
}

Figure 4. Prototype pattern implementation

With the abstraction provided by the Serialize method, a deep
copy becomes as simple as shallow cloning, as in Figure 5:

[Serializable()]
class PrototypeManager : IPrototype <Prototype> {

 public Dictionary <string,Prototype> prototypes

 = new Dictionary <string,Prototype> {

 //… details …

 }

static void Main () {

 PrototypeManager manager =
 new PrototypeManager();

 Prototype c2, c3;
 c2 = manager.prototypes["key1"].Clone();
 c3 = manager.prototypes["key2"].DeepCopy();

}

Figure 5. The Prototype Manager and Client

In addition to Serialization, this excerpt shows the use of generics
in assisting libraries to be highly reusable. The
PrototypeManager can declare the specific details of a
particular set of prototypes in a dictionary (through a collection
initializer) or it could read the data from somewhere.

3.3 The Iterator pattern
The Iterator pattern provides a way of accessing elements of a
collection sequentially, without knowing how the collection is
structured. As an extension, the pattern allows for filtering
elements in a variety of ways as they are generated. The concept
of iterators and enumerators (also called generators) has been
around for a long time [3]. Enumerators are responsible for
producing the next element in a sequence defined by certain
criteria. The iterator is the means by which we cycle through this
sequence of elements from beginning to end.
Iterators need data to iterate over. Most of the time the data exists,
either in memory, on disk, or somewhere on the Internet.
However, sometimes an iterator will work with an enumerator that
actually generates values (for example, random numbers). The
Iterator pattern is the one that has received the most assistance
from language design in recent years. For this reason, the UML
diagram in Figure 6 shows the statements that are involved, on an
equal footing with the classes.

Figure 6. Iterator pattern UML diagram

For many years, iterators were implemented by following an
interface that needed the following three methods (Java):

boolean hasNext()
 Returns true if the iteration has more elements.
Object next()
 Returns the next element in the iteration.
void remove()

Removes from the underlying collection the last
element returned by the iterator (optional operation).

Over the past five years, developments in language and compiler
technology have wrought a revolution in loop programming.
Iteration over any collection of any data type is now linked to a
more compact, yet versatile, type-specific enumerator. The
inspiration for this new way of thinking comes from the database
world (SQL) as well as the functional world (Haskell and
Mondrian). Consider the following C# 3.0 statements in Figure 7:
The first statement asks for a selection of files from a collection
called mydir, with the conditions that they must be dated 2007 or
later and that the selection, when made, must be ordered by
filename. The statement will work no matter what the type of the
collection holding mydir is: it could be an array, a linked list, a
binary tree, or even a database. This statement works together
with an enumerator that:

var selection = from f in mydir
 where f.Date.Year >= 2007
 orderby f.Name
 select f;

foreach (var f in selection) {
 Console.Write(f + " ");
}

Figure 7. LINQ query syntax

• Follows the structure of the data type in a prescribed order
• Applies the conditions and ordering as specified
• Operates in a lazy fashion, generating values only when they

are needed by an iterator.
IEnumerable is an interface that has one method,
GetEnumerator. Classes that implement IEnumerable
supply a GetEnumerator method that successively returns a
value from a collection using yield return. Each time
GetEnumerator is invoked, control picks up after the yield
return statement.
All collections in the .NET library implement IEnumerable
(i.e., they each provide a conforming GetEnumerator method).
That is why they can be used in the foreach statement directly.
When yield return appears in a foreach loop, it is making
use of the underlying GetEnumerator for the collection it is
iterating over, as in:
public IEnumerator GetEnumerator () {
 foreach (string element in months)
 yield return element;
}

In this case, the enumerator for an array (used by months) is
invoked. yield return keeps the enumerator going for the
next iteration. However, a yield break statement has the
effect of terminating the loop that called the enumerator.
IEnumerator is a lower-level interface that specifies the
Current property and the Rest and MoveNext methods. It is
possible to implement this method and thereby satisfy the
requirements of the IEnumerable interface.
Enumerators can also provide filters, transformations, and
projections on the data that can be linked back to the iterators that
use them. The enumerators provide methods that do the work, and
the iterators can either call the methods directly or use the special
LINQ query expression syntax (Figure 7). Query expressions
provide a language-integrated syntax for queries that is similar to
relational and hierarchical query languages such as SQL and
XQuery. The current LINQ syntax developed from lambda
expressions as can be seen by considering the equivalent of the
selection in Figure 6, minus the sort:

// in LINQ
var selection = from f in mydir
 where f.Date.Year >= 2007

 select f;

 // as a lambda expression
 var selection = mydir.

 Where(f => f.Date.Year >= 2007));

Thus, from the abstraction point of view, query expressions
present library functions with a considerable dose of syntactic
sugar.

4. ASSESSMENT
As we have seen, a design pattern is a formal mechanism of
documenting solutions to reoccurring software design problems.
The academic and commercial interest in software design patterns
has grown dramatically over the last few years, as they are seen as
solutions to software design issues. They are, of course, not the
only solution to software design, and they should not be used to
the exclusion of all others. Component-based design, software
architecture, aspect oriented programming, and refactoring also
have a place. Viewed against the larger backdrop of software
engineering, design patterns can be seen to present some of their
own abstraction challenges:
Traceability The traceability of a design pattern is hard to
maintain when programming languages offer poor support for the
underlying patterns (akin to a large animal struggling to survive
when its feeder animals mutate.) The physical implementation of
a design pattern in a programming language can be scattered
across a number of classes and thus hard to trace (a similar
scenario to animals scattering in a drought.) In this respect, the
implementations in [4] have made considerable strides by using
some of the more compact features of C#, such as delegates and
query expressions, which are easier to spot and track.
Reusability Design patterns are used and reused in the design of a
software system, but with little or no language support, developers
must implement the patterns again and again in a physical
programming language. A design pattern does not give a
developer the same benefits that a component does, which can
encapsulate behavior and be reused as is. Raising the language bar
through syntactically sugared libraries can assist in meeting this
challenge, as illustrated with the Iterator pattern.
Writability Some design patterns have several methods with trivial
behavior. Without good programming tools, it can be tedious to
write all this code and maintain it. Once again, more compact and
powerful language features can alleviate the programmer’s
burden.
Maintainability Using multiple patterns can lead to a large cluster
of mutually dependent classes, which lead to maintainability
problems when implemented in a traditional object-oriented
programming language. Current research is investigating how to
transform design patterns into reusable artifacts so that developers
won’t have to implement the same patterns over and over [Meyer
and Arnout 2006]. In the context of design patterns, a specific
language feature, a pattern library, or a component could solve the
pattern implementation reusability problem.

5. CONCLUSIONS
This paper has positioned design patterns as key to the realization
of abstraction in multi-layered software engineering. It argues that
design patterns can be implemented in many ways, and that the
higher the level of the language features that is used, the easier
and more understandable are the implementations of the patterns.
Considerable progress has been made in raising the bar for
language features in C# 3.0, and examples of how the features can
be used are explained. These features include both new syntax as
well as library methods.
Further work still has to be done on the precise evaluation of the
new pattern implementations, as summarized in Table 1. In
addition, the opportunity for the reuse of patterns is an area for
further research.

ACKNOWLEDGMENTS
Thanks to Alistair van Leeuwen for his assistance with the
Assessment section.

REFERENCES
[1] Arnout, Karine and Bertrand Meyer. Pattern

componentization: the factory example, Innovations in
Systems and Software Technology: a NASA Journal 2 (2)
July 2006, 65–79.

[2] Baumgartner, Gerald, Konstantin Läufer and Vincent F
Russo. On the interaction of object-oriented design patterns
and programming languages, Technical Report, CSR-TR-
96-020, Purdue University, 1996.

[3] Bishop, J M. The effect of data abstraction on loop
programming techniques, IEEE Trans. on Software
Engineering, 16 (4) April 1990, 389-402.

[4] Bishop, Judith. C# 3.0 Design Patterns, O’Reilly,
Sebastapol, CA, 2008

[5] Bosch, Jan. Design Patterns & Frameworks: On the Issue of
Language Support Proc. Workshop on Language Support
for Design Patterns and Object-Oriented Frameworks
(LSDF), ECOOP 1997, 133–136.

[6] Bosch, Jan. Design Patterns as Language Constructs,
Journal of Object-Oriented Programming 11 (2) 1998, 18–
32.

[7] Chambers, Craig, Bill Harrison, and John Vlissides. A
Debate on Language and Tool Support for Design Patterns

Proc. 27th ACM SIGPLAN-SIGACT POPL Symposium,
2000, 277–289.

[8] Elton, Charles S. Animal Ecology, 1st edn 1927, Sidgwick
and Jackson, London. Reprinted several times, e.g. 2001 by
The University of Chicago Press, ISBN 0-226-20639-4

[9] Gamma, Erich, Richard Helm, Ralph Johnson, John M.
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Boston, MA, 1995.

[10] Gil, Joseph and David H Lorenz. Design Patterns vs.
Language Design, Proc. Workshop on Language Support for
Design Patterns and Object-Oriented Frameworks (LSDF),
ECOOP 1997, 108–111.

[11] Hannemann, Jan, and Gregor Kiczales. Design Pattern
Implementation in Java and AspectJ. OOPSLA 2002, 161-
173.

[12] Kramer, Jeff and Orit Hazzan. Summary of an ICSE 2006
Workshop: the role of abstraction in Software Engineering,
ACM SIGSOFT Software Engineering Notes, 31 (6)
November 2006, 38-39.

[13] Kramer, Jeff. Is Abstraction the Key to Computing?, CACM
50 (4) April 2007, 37-42.

[14] Meyer, Bertrand and Karine Arnout. Componentization: the
Visitor example, Computer 39 (7) July 2006, 23–30.

[15] Rugaber, Spencer. Cataloguing design abstractions, ROA
’06, 11-17, Shanghai, China, May 2006.

